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Abstract 

We have studied and developed procedures for the adaptive and parallel so- 
lution of transient partial differential equations. In particular, we concentrated 
on (i) techniques to manage distributed data, (ii) dynamic load balancing, {in) 
discontinuous Galerkin schemes for hyperbolic systems, (iv) a posteriori error es- 
timation strategies for discontinuous Galerkin methods, and (v) generalized mesh 
adaptation procedures. The resulting software is being apphed to problems arising 
in several discipHnes; however, it has been most successful with compressible iuid 
dynamics. 



1    Scientific Accomplishments 

1.1 Introduction 

We examined adaptive and parallel solution procedures for transient partial difFeren- 
tial equations. In particular, we describe (i) libraries for managing distributed data, 
(a) dynamic load balancing techniques, {Hi) parallel algebraic solution procedures, (iv) 
discontinuous Galerkin methods for hyperbolic systems of conservation laws, (v) a pos- 
teriori error estimation for discontinuous Galerkin methods, and (vi) generalized mesh 
adaptation procedures. 

1.2 Parallel Data Management 

The Rensselaer Partition Model (RPM) [22, 21] is a hierarchical structure with a par- 
tition model containing the actual dissection of the domain into segments. Partitions 
are grouped by a process model for assignment to processes. Processes are assigned to a 
machine model that represents the actual computational nodes and their communication 
and memory properties. RPM's dynamic partitioning capabilities make it possible to 
tailor task scheduling to a particular architecture. Its structure is rich enough to handle 
h-, P-, and r-refinement and several discretization technologies, including finite difference, 
finite volume, finite element, and partition of unity methods, 

RPM can manage distributed data and support multiple partitions per process and 
multiple mesh data structures. We are developing procedures that automatically gather 
and include data on computer processing, memory, and communications performance 
for use with load balancing on heterogeneous processing systems. These would greatly 
enhance the performance in such environments and improve the generality of the data 
management system. 

1.3 Dynamic Load Balancing 

Several modifications have been made to the distributed octree partitioning procedures to 
enhance their performance. These are described in the M.S. thesis of Paul Campbell [4] 
and include (i) capabilities to retain the octree between successive load balancings, (ii) 
improved performance of the various space filling curves used to traverse the octree struc- 
tures, and (Hi) a superior distribution algorithm. These facilities have been incorporated 
into Sandia National Laboratories' Zoltan dynamic load balancing library. The ability 
to save the distributed octree between load balancings avoids the need to re-build and 
distribute a tree at each load balancing and, additionally, improves scalability. 

Different octree traversals offer superior performance in some instances. Our octree 
libraries have capabilities to traverse the distributed tree using Morton, Gray code, and 
Hilbert orderings [4]. Examples exist where each one provides the best performance [4]; 
however, in general, the Hilbert ordering is best. As an example, consider the adaptive 
solution of the flow in a vented shock tube [8] on a 56-processor IBM SP computer over 
a sequence of ten adaptive mesh refinements. Results in Figure 1 show the maximum 
and average surface communication indices and interprocessor adjacencies using Morton 
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and Hilbert tree traversals. The average surface index is the number of element faces 
on the boundaries of partitions relative to the total number of element faces in the 
problem. The maximum surface index provides similar information for each processor 
and then maximizes this data over the processors. These indices provide a measure of 
communications costs. The interprocessor adjacencies indicate the relative number of 
other processors to which a given processor must communicate. It provides a measure of 
message latency. 

The results in Figure 1 indicate that the Hilbert ordering is superior to the Mor- 
ton ordering for this problem. (The Gray code ordering was worse than these two in 
this case.) The initial mesh contained approximately 70,000 elements, the fifth mesh 
contained approximately 300,000 elements, and the tenth mesh contained in excess of 
500,000 elements. 

Surface index for 56 processors 
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Figure 1: Surface indices and interprocessor adjacencies for ten rebalancings during a 56- 
processor adaptive finite element solution. Solid lines show average surface index (left) 
and interprocessor adjacency (right). The dashed lines show the maximum surface index 
(left) and interprocessor adjacency (right). 

1.4    Solution Procedures 

We have concluded our investigation of efficient, parallel, preconditioning methods for 
the solution of large, sparse, indefinite linear algebraic systems with the culmination of 
Turner's Ph.D. dissertation [23]. Two manuscripts based on this work have been submit- 
ted for publication [24, 25]. The techniques describe a multilevel (AMLI) preconditioning 
of Axelsson and Vassilevski applied to a quasi-minimum residual (QMR) iterative pro- 
cedure. Coarsenings on unstructured meshes with adaptive /i-refinement are provided 
by projecting the solutions onto an octree structure (i.e., used for the load balancing) 
and then pruning the octree [25]. This is simpler than coarsening the original mesh and 
provides a readily available distributed structure. 



Parallel procedures rely on the principles of generic programming to isolate the ab- 
stractions of matrices and vectors from their particular implementation as serial or par- 
allel data objects. The goal is a standard such that any matrix or vector written to 
provide the required functionality can be used interchangeably [24]. The implementa- 
tion relies heavily on operator overloading and function/object templates. The algebraic 
interface has been tested relative to several serial and parallel representations including 
compressed sparse row (CSR) storage and a block oriented recursive matrix format use- 
ful with AMLI preconditioning. Qualitatively, the results indicate that near transparent 
parallelism can be obtained if sufficient care is taken with the serial implementation. 

1.5    Discontinuous Galerkin Procedures 

The discontinuous Galerkin (DG) method offers several advantages relative to traditional 
finite element and finite volume methods when solving hyperbolic systems of conserva- 
tion laws. It may be applied to arbitrarily high orders of accuracy on structured and 
unstructured meshes with a compact stencil. There is no need to enforce conformity 
and continuity in either the mesh or solution; thus, adaptive h- and p-refinement are 
greatly simplified. Inter element communication is face based, which simplifies parallel 
computation. Shock waves and other discontinuities are captured sharply to the nearest 
element boundary. And, conservation principles are satisfied on an element-by-element 
basis, which is important in many applications. These advantages and several aspects 
of the DG method are described in a sequence of manuscripts that construct orthogonal 
bases [16], describe limiting procedures [7], develop efficient local time stepping algo- 
rithms [18], create efficient serial and parallel data representations [17] and apply the 
method to compressible flow problems [7, 16, 17, 18]. 

In order to guide adaptive enrichment and appraise the accuracy of computed solu- 
tions, we developed a posteriori estimates of discretization errors. For one-dimensional 
systems, we have proven [3] that that the leading term of the spatial discretization error 
with piecewise-polynomial approximations of degree p is proportional to a Radau poly- 
nomial of degree p -|- 1 on each element. With h a measure of the mesh spacing, we 
also prove that the spatial discretization error is 0{h^P+^) at the downwind point and 
0(ftP+2) at the remaining roots of Radau polynomial of degree p -i-1 on each element. 
These results are used to construct asymptotically correct a posteriori estimates of spa- 
tial discretization errors that are effective in regions where solutions are smooth. The 
strong "superconvergence" at the downwind element ends has enabled us to obtain these 
global rather than local error estimates. 

Our results have been extended to multiple dimensions where we show that the leading 
term of the spatial discretization error of a piecewise-polynomial solution of degree p 
is the difference between orthogonal polynomials of degrees p and p + 1 [14], Since 
Radau polynomials are the difference between successive Legendre polynomials, our error 
estimate may be thought of as a multi-dimensional Radau polynomial. We further show 
that the strong superconvergence at downwind element boundaries persists in the sense 
that the average spatial error on downwind element faces converges as 0{h^P+^) [14]. 



N 16 56 160 
P e 0 e e 0 9 e 0 e 
0 4.85e-02 1.0116 2.49e-04 1.0304 1.49e-02 1.0418 
1 8.27e-04 1.0022 2.16e-04 1.0537 7.85e-05 1.0266 
2 3.11e-05 0.9609 4.16e-06 0.9267 9.24e-07 0.9054 
3 1.71e-06 1.0161 1.04e-07 1.0546 1.47e-08 1.0054 
4 1.07e-07 1.0597 3.32e-09 1.0097 2.8e-10 0.9203 

Table 1: Errors ||e||o and effectivity indices 0 in the L2 norm for the problem (1). 

As an exampk; consider the solution of 

2«a; + U^ 
3 

on the square 0 < a;, y < 1 with boundary conditions chosen so that the exact solution is 

u = s/x + y + 1. (lb) 

Computations were performed on unstructured meshes with N = 16, 56, and 160 elements 
and polynomial degrees p = 0,1,..., 4 [14]. Results for the discretization error in the L2 
norm and the effectivity index (ratio of the estimated to exact error in the L2 norm) are 
presented in Table 1. All effectivity indices are within 10% of their ideal unit values. 

We also report the rate of convergence on the outflow boundary by conducting a 
sequence of computations on meshes obtained by solving (1) on uniform right-triangular- 
element meshes that have diagonals running from the upper left to the lower right of the 
region [14]. Let 

/+ [{u - U-) dt, (2) 

where L is the line connecting the upper left corner of the domain (0,1) to the lower 
right corner (1,0). Here, U' is the numerical solution on the left of L; hence, we may 
interpret J+ as the average error on outflow boundaries of those elements to the left of 
L. To compare, we also compute 

J- =  f(u - U+) dt, (3) 

where £/+ is the numerical solution on the right of L. Thus, J~ may be interpreted as 
the average error on inflow boundaries of those elements to the right of L. 

Results for p = 0,1,2,3, and iV = 8,32,128, are presented in Table 2. Estimates 
of the convergence rates compare well with the theoretical 0{h'^P+^) and 0{hP+^) rates 
on outflow and inflow boundaries, respectively. The average numerical solution is, thus, 
considerably more accurate along an outflow edge than it is along an inflow edge, even 
for very coarse meshes. 

We have observed that the strong superconvergence at outflow boundaries [14] can 
be used to identify discontinuities. This, in turn, can be used to provide information on 
where to apply limiting to reduce oscillations when using high-order methods. 



p = 0 p=l 
N /- r 1+ r J- r J+ r 
8 1.08e-01 - 1.07e-02 - 2.23e-03 - 7.536-06 - 

32 5.57e-02 0.96 5.08e-03 1.07 6.02e-04 1.89 8.95e-07 3.07 
128 2.11e-02 1.4 2.47e-03 1.04 1.56e-04 1.95 1.09e-07 3.04 

p = 2 p = 3 
N I- r J+ r /- r /+ r 
8 7.56e-05 - 1.98e-08 - 3.02e-06 - 8.26e-ll - 

32 1.07e-05 2.82 4.83e-10 5.35 2.25e-07 3.74 6.17e-13 7.06 
128 1.43e-06 2.93 1.77e-ll 4.77 1.55e-08 3.85 5.44e-15 6.82 

Table 2: Average errors on inflow J" and outflow J+ boundaries L for (1) as functions 
of p and N and estimated convergence rates r. 

1.6    Generalized Mesh Adaptation Procedures 

Procedures to adaptively refine meshes are well known in the case of straight sided, 
planar-faced elements. However, the application of these techniques to three-dimensional 
domains will not improve the geometric approximation when the domain is curved. The 
simple "snapping" of nodes to the curved boundary can yield invalid elements. Therefore, 
a procedure is needed to perform mesh adaptation for curved three-dimensional domains 
that explicitly considers the snapping of vertices to curved domain boundaries. The 
procedure begins by applying a set of refinement templates appropriate for straight sided, 
planar-faced elements. At this point the mesh topology is what was requested by the 
adaptive procedure. However, the geometry of the mesh is incorrect for the new mesh 
vertices classified on curved domain boundaries. 

The procedure to place refinement vertices on the model boundary employs mesh 
modification operators when moving the vertex to the boundary would yield invalid or 
unacceptably shaped elements. The first step in the algorithm when a vertex can not 
be moved is to determine the first plane which, if crossed, causes one or more elements 
to become invalid. With this information, consideration is given to the mesh modifica- 
tion(s) needed to ensure the vertex can be moved onto that plane or past. If after that 
modification the mesh vertex can be placed at an appropriate boundary point, it is and 
that vertex needs no further consideration. If that vertex is still not on the boundary, 
it is placed back into the list to be considered again after the others are attempted. If 
this process is not successful in placing all the vertices on the boundary, a local cavity 
is created with its vertices on the boundary as appropriate and the cavity is given to a 
cavity meshing procedure. Since the cavity mesher can create new boundary vertices that 
are placed on a local faceted approximation of the boundary, it is possible to create new 
vertices that also have to be moved to the boundary. Typically the number of these new 
points is low (or zero) and they are usually closer to the boundary than the previously 
considered points. Further details appear in Li et al. [15] 

In the adaptive simulation of evolving geometry problems local mesh enrichments are 
requested to refined/coarsened elements to account for discretization error control, and/or 
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improve their shapes which have degraded due to large deformations, A combined mesh 
enrichment process is being developed to most effectively address both considerations. 
The mesh enrichments are executed through the controlled application of mesh entity 
swap, split, collapse and reposition operations [20]. Mesh refinement is accomplished 
using splitting operations with edge splits having the most flexibility. Mesh entity shape 
improvement is accomphshed by node-point motion or the application swap, split and 
collapse operations. In simulations where the mesh to be modified after a specific analysis 
step contains general combinations of elements to be refined/coarsened and to have their 
shapes improved, it is possible to determine local mesh modifications that simultaneously 
consider the desired size and shape. The key new capability developed is the consider- 
ation of the best combination of local mesh modifications to execute when elements 
are to be both refined/coarsened and have their shape improved. The determination of 
which elements need shape improvement is based on one of the standard non-dimensional 
isotropic shape measures. However, the algorithms to select the appropriate shape mod- 
ifications consider more detailed information on the element shape (dihedral angles and 
edge lengths) and element refinement/coarsening information in the selection process. 

2 Scientific Personnel 

In addition to the Principal Investigators Joseph E. Flaherty and Mark S. Shephard, 
former Ph.D. scholars James Teresco and Wesley Turner and M.S. student Paul Campbell 
were supported by this project. Current Ph.D. students Lilia Krivodonova and Peng Hu 
have also received support. Krivodonova is expected to complete her Ph.D. dissertation 
this spring. 

3 Technology Transfer 

3.1    Interactions 

Joseph E. Flaherty and Mark S. Shephard have regular interactions with Robert Dillon, 
Deborah Bleau, and Daniel Cler of Benet Laboratories. We have been collaborating on 
using the DG software to analyze muzzle blast effects with large-calibre weapons systems. 
These problems involve complex three-dimensional interior and exterior flows including 
realistic geometries and ground reflections. 

A start-up company, Simmetrix Corporation, is building on the mesh modification 
and analysis framework developments done in this project. Simmetrix has built upon the 
analysis framework developments to obtain Phase II DOE and AFOSR SBIR grants, of 
which Rensselaer has subcontracts for some of the further development. 

The octree load balancing software has been incorporated into the Zoltan dynamic 
load balancing library of Sandia National Laboratory. 



3.2    Presentations 
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